
20 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

International Journal of Management, IT & Engineering
 Vol. 15 Issue 05, May 2025,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

Message Observability in High-Stakes Notification Systems

Seema B Shrikant

Abstract

Real-time notification systems such as Email, SMS, and Webhooks play a

 critical role in delivering transactional messages in high-stakes industries like

 finance and healthcare. Traditional monitoring tools often rely on
 infrastructure-level metrics or basic delivery confirmations, which are

 insufficient for detecting message-level delivery failures, retries, or drops.

Keywords:
This paper presents a product-led approach to observability in notification

systems, focusing on end-to-end message traceability, anomaly detection,

Observability;

Notification Systems;

Retry Policy;

Delivery Reliability;

Product-Led Monitoring

and cross-functional visibility. Drawing from industry practices and

foundational tracing models such as Google’s Dapper [1], this approach

supports incident resolution, product decision-making, and client

communication. The proposed model emphasizes observability as a shared

operational capability that extends beyond backend teams and enables

 reliable communication across user-critical touchpoints.

 Copyright © 2025 International Journals of Multidisciplinary Research

Academy. All rights reserved.

Author correspondence:

Seema B Shrikant,

Product Manager, Visa Inc., Austin-TX, USA

Email: seemabshrikant@gmail.com

1. Introduction

Notification systems are integral to real-time user communication in sectors that demand both speed

and reliability. From transaction alerts and fraud warnings to onboarding workflows and password resets, these

messages often carry operational or regulatory significance. However, many organizations still rely on simple

indicators such as HTTP success codes or application-level logs to determine delivery success. These limited

signals obscure issues such as vendor-side SMS drops, email bounces, and webhook retries that silently fail.

Without deeper visibility, failures may only become apparent after customer complaints or SLA violations.

In modern platforms, notification delivery is often dependent on third-party vendors and asynchronous

queuing mechanisms. This makes message observability a non-trivial challenge. A message may appear

successfully dispatched from the application layer but still fail due to an external provider rejection, filtering

policies, or queue-level drop. Even when logs are available, they are typically siloed across systems, making

holistic analysis time-consuming and error-prone.

Recent advances in distributed tracing and platform observability have enabled engineering teams to

monitor application behavior more granularly [1]. Yet, these practices are rarely extended to the message layer

in notification systems. While infrastructure monitoring tools like Prometheus and Grafana, or commercial

suites like Datadog and Splunk, offer rich metrics, they often lack business-level context or usability for cross-

functional teams. Without the ability to drill into delivery outcomes by client, use case, or channel, product and

support teams are left without meaningful insights. This paper proposes a structured observability model that

shifts ownership from infrastructure to product and support teams, enabling full message lifecycle tracking and

decision-making grounded in delivery performance.

http://www.ijmra.us/
mailto:editorijmie@gmail.com
http://www.ijmra.us/
mailto:editorijmie@gmail.com
mailto:seemabshrikant@gmail.com

21

ISSN: 2249-0558 Impact Factor: 7.119

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

2. Theoretical Basis and Proposed Method

Much of the foundational thinking around observability in distributed systems stems from the

introduction of Dapper, Google’s internal tracing framework [1]. It introduced the idea of tracking user requests

across multiple services through trace IDs, enabling performance debugging at scale. Dapper has since inspired

tools such as Zipkin, Jaeger, and the OpenTelemetry standard.

OpenTelemetry provides a vendor-neutral framework for collecting and correlating logs, metrics, and

traces, but it requires technical implementation and lacks business-layer abstractions. In notification systems,

messages often traverse external vendor APIs, asynchronous queues, and retry mechanisms that span systems

outside of direct developer control. Monitoring such systems purely at the infrastructure level is insufficient.

Turnbull [2] emphasizes the importance of full-stack observability, which includes not only the

infrastructure and application layers but also user experience and operational workflows. However, practical

adoption often stops at engineering boundaries. The model introduced in this paper applies these concepts to

real-time messaging systems by integrating delivery tracking with decision-making roles across engineering,

product, and support.

The proposed model consists of four interlinked components designed to improve observability in

asynchronous, multi-channel notification systems. These include message traceability, role-aware visibility,

anomaly detection, and retry pattern analysis. Each of these components contributes to building a more resilient

and accountable messaging infrastructure that supports user-critical operations.

Figure 1: Framework Overview Diagram

3. Research Method

This section details how each component of the proposed observability framework was implemented

within a high-scale financial platform. The objective was to assess whether a product-led observability model

could meaningfully improve messaging reliability, reduce support dependencies, and enhance cross- functional

accountability. The platform serves global enterprise clients and delivers millions of messages per month across

Email, SMS, and Webhook channels.

Rather than overhauling infrastructure, the implementation focused on layering observability on top of existing

delivery workflows. Each pillar—traceability, dashboards, anomaly detection, and retry intelligence—was

approached as a discrete track. These efforts were evaluated not only for technical soundness but also for their

impact on operational transparency and team workflows.

3.1 Message-Level Traceability

At the core of the observability framework is the ability to track each individual message throughout its

delivery lifecycle. To accomplish this, a globally unique identifier was assigned to every outbound message at

the time of event generation. This ID was consistently passed through all downstream systems—including

http://www.ijmra.us/
mailto:editorijmie@gmail.com

22

ISSN: 2249-0558 Impact Factor: 7.119

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

internal queues, orchestration services, and third-party delivery vendors—to maintain continuity of traceability.

Alongside the identifier, a structured payload of metadata was captured at each transition point. This

included timestamps for message creation, queue entry, vendor dispatch, and final delivery or failure

confirmation. Delivery status codes, retry attempt counts, and error responses were also logged. In some cases,

the platform captured vendor-specific bounce reasons or blocklist indicators, enriching the dataset for

downstream analysis.

Rather than relying on monolithic log files, the data was ingested into a centralized telemetry system

designed for query ability by both technical and non-technical users. This ensured that any individual message

could be located and inspected within seconds, even across asynchronous flows.

Over time, this message-level traceability became a critical tool not just for diagnosing incidents, but also

for training support teams, validating system updates, and identifying long-tail edge cases. It served as the

foundation for the rest of the observability framework.

Figure 2: Message Lifecycle Diagram

3.2 Role-Based Observability Dashboards

Once message-level traceability was established, the next priority was making that data actionable

across different user groups. Dashboards were designed with tailored views for engineering, support, and

product teams—each with distinct access needs, technical fluency, and decision-making responsibilities.

For support teams, the focus was on fast, intuitive search capabilities. They could enter a message ID,

client organization name, or customer account number to retrieve the full delivery history of a message,

including error reasons and retry attempts. These dashboards often surfaced only the most critical fields—

delivery status, timestamp, channel used, and resolution outcome—so that support agents could triage tickets

quickly without engineering intervention.

Product managers used delivery health dashboards to monitor performance across message types and

use cases. For example, they could filter messages tied to account onboarding workflows and compare success

rates across geographies or vendors. This allowed them to make data-informed decisions on feature

prioritization and client communication strategies.

Engineering teams accessed more detailed dashboards and logs through Grafana and Kibana interfaces

connected to the telemetry backend. These dashboards supported deeper analysis, including

http://www.ijmra.us/
mailto:editorijmie@gmail.com

23

ISSN: 2249-0558 Impact Factor: 7.119

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

filtering by HTTP response codes, vendor error messages, and latency metrics over time. Engineers used these

insights to optimize retry logic, identify systemic patterns, and validate fixes.

By exposing a shared observability layer that respected each team’s operational context, the platform avoided

tool fragmentation and fostered a sense of joint ownership over delivery reliability.

3.3 Drop and Anomaly Detection

A core capability of the observability framework was the ability to proactively surface delivery

failures before they became client-visible issues. Unlike infrastructure monitoring that detects server or CPU

outages, message anomaly detection focuses on identifying unusual behavior in delivery outcomes—such as

sudden spikes in bounces, delays, or retries.

Each delivery channel had its own thresholds for what constituted “normal” versus anomalous

behavior. For example, bounce rates above 2% for email messages or timeouts exceeding 5 seconds for

Webhook responses were flagged for review. These thresholds were refined over time based on historical trends

and message criticality. Time-sensitive alerts (e.g., OTPs) were held to stricter standards than bulk marketing

messages.

Anomaly detection relied on structured logs collected via the telemetry system and compared them in

near-real-time to moving averages and historical baselines. Alerts were generated when deviations exceeded

acceptable bounds, either globally or for specific vendors, regions, or clients.

For example, an unanticipated rise in SMS delivery failures in a specific geographic region prompted a deeper

investigation that uncovered a vendor-level outage. In another case, increasing Webhook failures for a major

client were traced to their internal timeout policy changes.

By implementing channel-specific anomaly detection and coupling it with traceability data, teams

could respond to degradation events faster, with greater precision and fewer escalations. This not only improved

delivery reliability but also strengthened operational relationships with third-party vendors.

Figure 3: High-level flow for delivery anomaly alerts

http://www.ijmra.us/
mailto:editorijmie@gmail.com

24

ISSN: 2249-0558 Impact Factor: 7.119

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

3.4 Retry Behavior Monitoring

Message retries are a critical component of resilient notification systems, especially in environments that

depend on external APIs and asynchronous processing. However, overly aggressive retry policies can cause

system load issues, while overly conservative ones can compromise delivery reliability. Observability into retry

behavior allowed the platform to strike the right balance.

Each message sent through the platform included metadata fields capturing retry count, retry intervals, and

final delivery status. This data was aggregated over time and segmented by message type, delivery channel,

and use case. Trends such as frequent success after a single retry or consistent failures after a certain threshold

helped teams fine-tune retry configurations.

For example, time-sensitive messages like one-time passwords (OTPs) exhibited high success rates when

retried within the first 2 minutes. In contrast, bulk messages such as transactional receipts saw little gain after

the second retry, suggesting an opportunity to cap retries and reduce processing overhead.

The observability framework supported both arithmetic and geometric retry strategies and captured the

effectiveness of each. Visualization tools allowed engineers to compare retry success curves and evaluate retry

fatigue—cases where repeated attempts provided diminishing returns. In one pilot, shifting to a backoff strategy

for non-critical messages reduced vendor rate-limit errors and improved platform throughput during peak

hours.

By continuously analyzing retry patterns and outcomes, the platform established a more data-driven

approach to reliability. This helped reduce delivery-related resource costs while preserving the responsiveness

expected in mission-critical flows.

Figure 4: Success rate by retry attempt

This chart illustrates the cumulative percentage of messages successfully delivered after each retry

attempt. The majority of messages succeeded on the first attempt or within the first retry, with only marginal

gains beyond the second attempt. This finding informed the platform’s decision to adopt tiered retry policies—

reserving aggressive retries for high-priority messages and reducing unnecessary load for non- critical traffic.

4. Results and Discussion

4.1 Faster Incident Resolution

The most immediate impact of implementing message-level traceability was a measurable reduction

in the time it took to resolve delivery-related incidents. Prior to the framework, incident resolution often

http://www.ijmra.us/
mailto:editorijmie@gmail.com

25

ISSN: 2249-0558 Impact Factor: 7.119

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

required coordination between multiple teams, manual log mining across disparate systems, and guesswork

based on limited metadata. Engineering teams frequently had to reconstruct the message path from fragmented

logs, while support teams lacked the access needed to triage issues independently.

After the framework was implemented, messages could be searched by ID, event type, or client

account. Logs captured each transition point with consistent identifiers, and delivery metadata—such as vendor

status codes, timestamps, and retry results—was easily retrievable in real time. This allowed engineering teams

to isolate failure points quickly, often without needing to escalate across systems.

In one instance, a critical production incident involving a delay in sending password reset emails was

resolved in under 30 minutes using the traceability dashboard. Previously, such an issue might have taken

hours to debug, often requiring cross-team calls and speculative fixes. With clear visibility into where the

messages stalled—in this case, a stuck queue due to a malformed vendor response—the engineering team was

able to restore flow promptly and confidently communicate resolution details to stakeholders.

This reduction in time-to-resolution not only improved system reliability but also built internal trust

in the platform’s observability tooling. Over time, incident retrospectives increasingly referenced dashboard

usage and trace logs as first-line diagnostics, reducing the reliance on anecdotal debugging.

4.2 Reduced Support Ticket Volume

Before the implementation of the observability framework, a significant portion of support tickets

related to notification delivery failures required investigation by engineering teams. Clients would often report

that a message had not been received, but support agents lacked the tooling or data to confirm whether the

message had been sent, retried, bounced, or dropped. As a result, even routine queries—such as confirming a

Webhook delivery or checking for an SMS bounce—had to be escalated, creating bottlenecks and increasing

mean time to resolution.

Following the rollout of role-based dashboards, support teams gained direct access to the message

trace data they needed to triage delivery-related issues. They could now search by client ID, event type, or time

range and immediately view the status of all associated messages, including vendor error messages and retry

behavior. In many cases, they were able to identify and communicate root causes without requiring engineering

intervention.

This shift resulted in a noticeable drop in delivery-related support tickets being escalated beyond Tier

1. Instead of submitting Jira tickets or Slack pings to backend teams, support agents were empowered to

investigate and close tickets independently, often within minutes. While the overall number of client queries

remained steady, the percentage requiring engineering involvement declined significantly.

Moreover, the support team’s improved confidence in the data led to more accurate and consistent

communication with clients. Rather than relying on speculative language (“engineering is investigating”),

agents could provide concrete timelines and explanations backed by trace logs. This reduced client frustration

and increased satisfaction during high-sensitivity events, such as fraud alerts or account activity notifications.

4.3 Product Insights and Roadmap Impact

Beyond technical diagnostics, the observability framework provided product managers with a new

class of delivery intelligence—actionable data that previously required engineering queries or manual

synthesis. By exposing aggregate delivery success rates, retry counts, bounce trends, and vendor-specific

anomalies through configurable dashboards, the platform enabled product teams to make faster, evidence-

based decisions about product behavior and prioritization.

One of the most significant shifts was in how the team evaluated and deprecated underperforming

message flows. For example, a multi-step communication sequence tied to a lower-priority informational

update consistently showed lower success rates and high retry volumes in a specific geography. Because this

insight was surfaced directly in the product-facing dashboard, the team was able to validate the degradation

over time and reprioritize the initiative. In this case, the use case was modified to reduce message frequency

and shifted to a different channel with more reliable delivery metrics.

Delivery observability also helped product teams set clearer expectations with clients during

onboarding. By visualizing baseline delivery rates for different event types, channels, or regions, they could

http://www.ijmra.us/
mailto:editorijmie@gmail.com

26

ISSN: 2249-0558 Impact Factor: 7.119

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

better communicate expected performance and steer clients toward configurations with the highest reliability.

This reduced back-and-forth and post-implementation surprises, particularly with high-value enterprise clients.

Moreover, during quarterly planning, delivery trend data became part of the prioritization rubric.

Issues that previously would have been considered anecdotal—such as slow Webhook response times or

inconsistent SMS delivery to certain carriers—were now backed by quantifiable data. This enabled teams to

advocate for platform investments with confidence and clarity.

4.4 Retry Strategy Optimization

Retry logic plays a critical role in notification reliability, especially in systems reliant on external

delivery providers. However, without visibility into actual retry performance, most systems adopt static retry

policies—applying uniform intervals and retry limits across all message types regardless of urgency, user

impact, or cost. Prior to implementing observability, this was the case for the platform as well.

Once retry behavior was captured and visualized as part of the observability framework, patterns

quickly emerged. Most critical messages, such as one-time passwords (OTPs) or fraud alerts, succeeded within

the first retry attempt. Non-critical messages, on the other hand—such as balance summaries or marketing

receipts—often experienced diminishing returns after the second or third attempt, with retries providing little

added value.

These insights informed the platform’s shift from a single global retry policy to a tiered retry strategy.

Messages were categorized based on criticality, with high-priority notifications receiving shorter retry intervals

and extended retry windows, while informational messages were capped at fewer retries with increased spacing

between attempts. This adjustment helped reduce unnecessary load on both internal systems and third-party

vendors during peak periods, while ensuring that high-urgency communications had the best chance of timely

delivery.

Engineers also used retry analytics to detect systemic patterns such as “retry fatigue”—scenarios

where repeated retries failed due to incorrect configurations, like expired tokens or blocked endpoints. With

better visibility, these cases could be corrected proactively rather than through support escalation.

The tiered retry model, supported by observability data, not only improved overall success rates but also

allowed teams to fine-tune the balance between reliability and cost. This approach aligned retry behavior with

user impact and system efficiency—a step forward from traditional retry heuristics.

4.5 Business and User Impact

The technical benefits of the observability framework translated into tangible business value and

improvements in end-user experience. While observability is often positioned as a backend capability, its real

power emerged when it was integrated into operational workflows and decision-making across teams.

From a business standpoint, improved observability directly reduced operational risk. Notifications

such as fraud alerts, transaction confirmations, and password reset emails are often time-sensitive and security-

critical. Failures in these channels can lead to customer churn, reputational damage, and compliance concerns.

By identifying and resolving delivery issues faster, the framework helped ensure these communications reached

users reliably, reinforcing the platform’s trust and credibility.

Support teams, often the first line of response during incidents, became significantly more

empowered. They could speak with confidence during high-pressure situations, such as real-time delivery

failures or vendor outages, backed by data from traceability logs and dashboards. This improved client

communication reduced SLA breaches and escalations, and ultimately strengthened client relationships.

For end users, even small improvements in delivery speed and reliability made a noticeable difference.

Successful and timely delivery of one-time passcodes, fraud alerts, and order confirmations not only

improved usability but also lowered abandonment rates in workflows dependent on real-time communication.

From a strategic lens, the availability of delivery performance data allowed leaders to shift

conversations from anecdotal observations to data-backed decisions. Product and engineering leads could

prioritize technical investments, vendor negotiations, or roadmap items based on observed delivery impact

across customer segments and channels.

http://www.ijmra.us/
mailto:editorijmie@gmail.com

27

ISSN: 2249-0558 Impact Factor: 7.119

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

By transforming delivery observability into a cross-functional capability, the framework closed the

feedback loop between technical operations and business outcomes. It demonstrated that platform reliability is

not just a system metric, but a business driver directly tied to user experience, client retention, and strategic

clarity.

Metric Before Framework After Framework Change

Average Incident Resolution Time 4.5 hours 3.9 hours ↓ ~13%

Monthly Delivery-Related Support

Tickets
420 370 ↓ ~12%

Time to Diagnose Failed Message 35 minutes 28 minutes ↓ ~20%

Use Cases Reprioritized Based on

Data
- 1

+1 (actionable

case)

Tiered Retry Policies in Use 0 1 Introduced

Table 1: Operational Impact Metrics

5. Conclusion

Notification systems are often treated as technical backdrops, yet their performance directly impacts

user trust, business continuity, and operational efficiency. This paper introduced a product-led observability

framework designed specifically for real-time notification platforms that span multiple channels and external

vendors.

The proposed approach—anchored in message-level traceability, role-specific dashboards, anomaly

detection, and retry behavior analysis—demonstrated measurable gains in incident resolution speed, support

efficiency, and product decision-making. Importantly, it showed that observability is not just a backend

function, but a cross-functional enabler that connects engineering precision with user outcomes and business

priorities.

By embedding observability as a first-class concern across roles, the framework promoted a culture

of shared accountability. Support agents could investigate issues without engineering bottlenecks. Product

teams could validate tradeoffs and investments using real delivery data. Engineering teams could respond faster

and plan smarter.

Looking ahead, the framework opens doors to future enhancements, including predictive anomaly

detection, machine learning–driven diagnostics, and even client-facing delivery dashboards. These

opportunities reaffirm that observability—when implemented with purpose—can become a foundational pillar

of platform trust and operational excellence.

References

[1] Sigelman, B., Barroso, L., Burrows, M., Stephenson, P., & Vahdat, A. (2010). Dapper, a large-scale distributed

systems tracing infrastructure. Technical Report, Google Inc.

[2] Turnbull, J. (2020). Monitoring and Observability. Turnbull Press.

http://www.ijmra.us/
mailto:editorijmie@gmail.com

